Special Issue on Neurodynamic Systems for Optimization and Applications.
نویسندگان
چکیده
Recurrent neural networks, as dynamical systems, are usually used as models for solving computationally intensive problems. Because of their inherent nature of parallel and distributed information processing, recurrent neural networks are promising computational models for real-time applications. Constrained optimization problems arise in a wide variety of scientific and engineering applications, including signal and image processing, system identification, robot control, process control, pattern recognition, etc. Since the Hopfield neural network was introduced for solving optimization problems, significant progress has been made in theory, algorithms and applications. A number of neurodynamic models have been proposed for solving different problems ranging from discrete optimization to continuous optimization, linear programming to nonlinear optimization, convex optimization to non-convex optimization, smooth optimization to non-smooth optimization, numerical software to analog hardware implementations, etc. Some of them have been successfully applied to robot control, process control, signal and image processing, pattern recognition and classification, economic prediction and so on. In addition, as a kind of neuromorphic systems, they are potentially useful for simulating the brain functions, which is an important topic in neuroscience.
منابع مشابه
Neurodynamic Optimization and Its Applications in Robotics
Optimization problems arise in a wide variety of scientific and engineering applications. It is computationally challenging when optimization procedures have to be performed in real time to optimize the performance of dynamical systems. For such applications, classical optimization techniques may not be competent due to the problem dimensionality and stringent requirement on computational time....
متن کاملMaximal elements of sub-topical functions with applications to global optimization
We study the support sets of sub-topical functions and investigate their maximal elements in order to establish a necessary and sufficient condition for the global minimum of the difference of two sub-topical functions.
متن کاملAn Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...
متن کاملLaser safety importance in clinical laser applications
Introduction: By introducing of laser systems and their continuous development, a new chapter of laser systems applications in a variety fields including research and clinical science in addition to the therapeutic, diagnostic applications were available for medical professionals in various fields. Most lasers emit radiation with intrinsic probable risks where in laser-tissue i...
متن کاملA Sudy on Information Privacy Issue on Social Networks
In the recent years, social networks (SN) are now employed for communication and networking, socializing, marketing, as well as one’s daily life. Billions of people in the world are connected though various SN platforms and applications, which results in generating massive amount of data online. This includes personal data or Personally Identifiable Information (PII). While more and more data a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks and learning systems
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2016